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Composite Statistics for QTL Mapping with Moderately Discordant
Sibling Pairs
William F. Forrest and Eleanor Feingold
Department of Human Genetics, University of Pittsburgh

Extreme discordant sibling-pair (EDSP) designs have been shown in theory to be very powerful for mapping
quantitative-trait loci (QTLs) in humans. However, their practical applicability has been somewhat limited by the
need to phenotype very large populations to find enough pairs that are extremely discordant. In this paper, we
demonstrate that there is also substantial power in pairs that are only moderately discordant, and that designs
using moderately discordant pairs can yield a more practical balance between phenotyping and genotyping efforts.
The power we demonstrate for moderately discordant pairs stems from a new statistical result. Statistical analysis
in discordant-pair studies is generally done by testing for reduced identity by descent (IBD) sharing in the pairs.
By contrast, the most commonly-used statistical methods for more standard QTL mapping are Haseman-Elston
regression and variance-components analysis. Both of these use statistics that are functions of the trait values given
IBD information for the pedigree. We show that IBD sharing statistics and “trait value given IBD” statistics
contribute complementary rather than redundant information, and thus that statistics of the two types can be
combined to form more powerful tests of linkage. We propose a simple composite statistic, and test it with simulation
studies. The simulation results show that our composite statistic increases power only minimally for extremely
discordant pairs. However, it boosts the power of moderately discordant pairs substantially and makes them a very
practical alternative. Our composite statistic is straightforward to calculate with existing software; we give a practical
example of its use by applying it to a Genetic Analysis Workshop (GAW) data set.

Introduction

Risch and Zhang (1995) are generally credited with in-
troducing the extreme discordant sibling pair (EDSP)
design for quantitative trait–locus (QTL) mapping in
humans. The idea of that design is that if phenotyping
is much easier than genotyping, then a large population
of sibling pairs can be screened to find pairs where one
sibling has a very high trait value and the other sibling
has a very low trait value. The discordant pairs can then
be genotyped to assay identity-by-descent (IBD) sharing
at markers. If a marker is linked to the trait, the amount
of IBD sharing will be less than would be expected under
the null hypothesis of no linkage. The statistical signif-
icance of the IBD sharing can be tested with essentially
the same “mean sharing” test (e.g., Blackwelder and
Elston 1985) that is used with affected sibling pairs for
mapping qualitative traits.

The EDSP idea has been further developed in work
such as that of Gu et al. (1996), Kruse et al. (1997),
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Rogus et al. (1997), and Knapp (1998). Most of this
literature has focused on designs where one sibling is
in the top 10% of the trait distribution and the other
is in the bottom 10%, although some work has been
done on designs where the second sib is in the bottom
30%, and some work has been done on concordant-
pair designs. Despite its potential, the practical appli-
cability of the EDSP method has been somewhat limited
by the large number of pairs that must be screened to
find pairs that are discordant enough (Risch and Zhang
1996; Nicolaou et al. 1999). One of the few studies
using these designs is Xu et al. (1999). They screened
over 200,000 adults in Anquing, China in order to as-
certain 207 discordant and 357 concordant pairs. Many
researchers strapped for time and resources may balk
at such figures.

The main alternative to an EDSP study is simply to
measure the trait value in a “nonascertained” or “pop-
ulation” sample of families. This requires much less sub-
ject recruitment and phenotyping but much more ge-
notyping. The most commonly used analysis methods
for this type of study are Haseman-Elston regression
(Haseman and Elston 1972) and variance components
(Amos 1994). Haseman-Elston regression simply re-
gresses the squared difference in the siblings’ trait values
on their estimated IBD sharing at a marker. If there is
linkage, increased IBD sharing will be associated with
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a smaller squared trait difference and the regression line
will have a negative slope. Under the null hypothesis of
no linkage, the slope of the regression line is zero. Re-
cently, this method has been updated to use the nor-
malized product of the sibling trait values instead of the
squared difference (Wright 1997; Drigalenko 1998; Els-
ton et al. 1999). Variance-components methods, by con-
trast, rely on estimating variance-components param-
eters under a Gaussian trait model. They are more
frequently applied to larger pedigrees than is Haseman-
Elston regression. The covariance matrix of the multi-
variate trait vector is parameterized through a small
number of variance parameters representing various en-
vironmental and genetic effects at the locus and the
pairwise identity-by-descent relationships of the pedi-
gree members, and maximum-likelihood estimates of
the variance parameters are computed at each locus.
Testing is done with a likelihood-ratio (LOD score) test,
testing the hypothesis that the genetic-variance param-
eters at the locus are zero. Theoretical references are
Amos (1994) and Almasy and Blangero (1998). Ex-
amples of applications in the recent literature are Dug-
girala et al. (1999) and Fisher et al. (1999). Although
the variance-components approach is quite different
from that of Haseman-Elston regression and its exten-
sions, there is an important unifying feature: both derive
their statistical power from examining the distribution
of trait values, given the IBD information for the
pedigree.

In this paper, we show that IBD sharing statistics such
as those used for discordant-sibling-pair designs are sta-
tistically independent of “trait value given IBD” statis-
tics such as those used in variance components and Has-
eman-Elston regression, and thus that the two types of
statistics can be combined to give more powerful tests
of linkage. This independence result is actually quite
general, but we apply it to the special case of discordant
sibling pairs. We propose a very simple composite sta-
tistic for discordant pairs that just combines the Has-
eman-Elston regression test statistic with the mean IBD
sharing statistic. We examine the power of our com-
posite statistic with simulation studies, and discover that
while it increases power only slightly for EDSPs, it gives
a great deal of power to moderately discordant pairs.
This boost in power means that moderately discor-
dant–pair designs can be a useful middle ground be-
tween EDSP studies and population studies, offering a
practical balance between the numbers that need to be
phenotyped and the numbers that need to be genotyped.

Since our proposed composite statistic is somewhat
ad hoc, we discuss two possible refinements to it:
weighting the two components unequally, and replacing
Haseman-Elston regression with one of its newer ex-
tensions or with variance components. We show that
different weights are desirable for different ascertain-

ment schemes, and that “original” Haseman-Elston re-
gression is, in fact, probably the best choice for this
application. Finally, we point out that our statistic is
straightforward to compute using standard software
programs, and we demonstrate its application on a data
set from the Genetic Analysis Workshop 10 (GAW10).
In the discussion we briefly mention other possible ap-
plications of our statistical independence result, includ-
ing statistics for concordant sibling pairs and for ex-
perimental crosses.

Theory

In this section, we prove that statistics measuring IBD
sharing are statistically independent of those modeling
traits conditional on IBD sharing. The section can be
skipped by readers interested primarily in applications.

Consider an ascertained sample of n families of a
given pedigree structure. For family i, let denote theFi

vector of phenotype variables and let denote the in-Zi

heritance vector’s configuration. The phenotype vector
may be either a vector of values for family membersFi

or a function of those values. For example, in applying
Haseman-Elston regression, we ascertain sibling pairs,
then define to be the squared trait difference ratherFi

than the two values themselves. The inheritance vector
(Donnelly 1983) is the vector of zeros and ones that
tracks which grandparental allele is passed on in each
meiosis in the pedigree. Since the number of inheritance
vectors is , where A is the number of pedigree non-2A2
founders, we will typically reduce the inheritance vec-
tors to a collection of equivalence classes2Ak !! 2
known as “inheritance configurations” (see Dudoit and
Speed [1999] for a good recent discussion), which can
be denoted with arbitrary integer labels . For{1,2,) ,k}

, we use the expression to say that the1 < j < k Z = ji

ith family’s inheritance vector at a locus is a member
of the jth inheritance configuration. The best known
and most widely used example of inheritance configu-
rations is the reduction of the 16 or more inheritance
vectors characterizing the potential genetic relationship
of two relatives at a locus to the possible valuesk = 3
for the number of genes shared IBD (which has value
0, 1, or 2). IBD sharing between two relatives is a useful
example to keep in mind, since both Haseman-Elston
and variance-components methods model the pairwise
phenotypic dependence for two relatives as a function
of the expected number of genes shared IBD at a locus.
The pair is the complete data for the ith family.(F ,Z )i i

Typically, we will observe the phenotypic information
(e.g., affected status for a disease, blood pressure, etc.)
for each pedigree member, but will get only partial in-
formation on the inheritance vector through genotyped
markers. We denote the observed data by Y =i

, where is the marker data available(F ,M = m(Z )) Mi i i i
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on the ith family, which will be some random function
of the inheritance vector and the marker alleles’m(7)

cardinalities and frequencies.
We assume that some parametric model with param-

eter vector w is specified for the distribution of phe-
notype conditional on inheritance vector at theF Zi i

locus being tested, with conditional density given by
. We assume that the distribution of is multi-f (fFz) Zw i

nomial with cell probabilities p= (e.g., p=(p ,...,p )1 k

for sibling pairs, at an unlinked locus). The joint1 1 1( , , )4 2 4

density of (F,Z) is thus the product of the conditional
and marginal densities, and can be written

k

djf (f,z) = P [f (fFz = j)p ] ,w,p w j
j=1

where when and otherwise. For datad = 1 z = j d = 0j j

, we define such that when andn{F ,Z } d d = 1 Z = ji i i=1 ij ij i

otherwise. The joint likelihood of a sample of nd = 0ij

such families is then

n n k

dijP f (F ,Z ) = P P [f (FFZ = j)p ] .w,p i i w i i j
i=1 i=1 j=1

The complete-data log-likelihood, denoted , is∗L (w,p)
given by

n k

∗L (w,p) = d log [f (FFZ = j)p ]OO ij w i i j
i=1 j=1

n k k n

= d log f (FFZ = j) 1 log p dOO O Oij w i i j ij
i=1 j=1 j=1 i=1

∗ ∗= L (w) 1 L (p) . (1)

Hence, the complete-data log-likelihood separates into
two summands containing information about w and p

separately.
The log-likelihood of the observed data is found by

taking the conditional expectation of the complete-data
log-likelihood, given the observed data ,{Y } = {(F ,M )}i i i

that is, the trait and marker data on each pedigree
(Dempster et al. 1977). The difference between the com-
plete-data log-likelihood and the observed-data∗L (w,p)
log-likelihood is that the 0–1 valued indicatorL(w,p)
variables are replaced by conditional probabilities{d }ij

of the ith family’s inheritance vector configuration being
of type j, denoted . The observed data log-P(Z = jFY )i i

likelihood is therefore

n k

L(w,p) = P(Z = jFY ) # log [f (FFZ = j)p ]OO i i w i i j
i=1 j=1

n k

= P(Z = jFY ) # log f (FFZ = j)OO i i w i i
i=1 j=1

k n

1 log p P(Z = jFY )O Oj i i
j=1 i=1

= L (w,p) 1 L (w,p) . (2)1 2

The separation into two pieces—dependent only on w

and p, respectively—that we demonstrated for the com-
plete-data log-likelihood also holds for the observed-
data log-likelihood under the null hypothesis of no link-
age (which is the case of practical importance for
genome screening). This is because in (2) the first sum-
mand depends on p only through the probabil-L (w,p)1

ities , and similarly the second summand{P(Z = jFY )}i i

depends on w only through the probabilitiesL (w,p)2

. Under the null hypothesis of no linkage{P(Z = jFY )}i i

to the candidate locus, these probabilities depend only
on the (fixed) null values of rather than on their(w,p)
true values at each locus. The assumption of no linkage
implies that the phenotypic data is ignored when IBD
sharing at a locus is computed and that only the marker
data is used. Mathematically, this assumption replaces

by computed under the null hy-P(Z = jFY ) P(Z = jFM )i i i i

pothesis. Since computing IBD sharing probabilities us-
ing the multipoint marker data is the usual method in
standard packages such as GENEHUNTER (Kruglyak
et al. 1996), SOLAR (Almasy and Blangero 1998),
SAGE (Elston et al. 1999), and SIMWALK (Sobel and
Lange 1996), in practice, the observed-data log-likeli-
hood implicit in computations separates into summands
depending on w and p separately, in the form

L(w,p) = L(w) 1 L(p) . (3)

A more detailed mathematical discussion of these points
is contained in Appendix A. However, we stress again
that in existing packages, which use only marker data
in computing IBD sharing, the observed-data log-like-
lihood separation holds, giving us .L(w,p) = L(w) 1 L(p)

Perhaps the most important implication of the like-
lihood factorization above is that under regularity con-
ditions the maximum likelihood estimates and willˆ ˆw p

converge in distribution to independent multivariate
normal sampling distributions, so that

ˆ ˆCov(w ,p ) ≈ 0 G i,j . (4)i j

This holds because the Fisher information matrix will
be block-diagonal, since
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2 L(w,p)
I (w,p) = E 2i,j [ ]w pi j

2 [L(w) 1 L(p)]
= E 2{ }w pi j

= 0 ,

implying that its inverse, the normalized asymptotic co-
variance matrix, will also be block diagonal:

21I (w) 021I (w,p) = .21[ ]0 I (p)

Independence of and implies that any functions ofˆ ˆw p

them will likewise be independent. Since allele-sharing
statistics can be written as functions of , the impli-p̂

cation is that statistics modeling dependence of phe-
notypes on allele sharing (which typically will be func-
tions of , in our model’s parlance) will be independentŵ

of allele-sharing statistics and, hence, can be combined
to create more-powerful tests than those based on either
phenotype-based methods or allele-sharing alone. Spe-
cifically, we show in Appendix B that both Haseman-
Elston regression and variance-components methods are
convenient approximations of models in the form of the
first summand of our observed-data log-likelihood,

. Thus, our theoretical development implies thatL(w)
Haseman-Elston and its extensions or variance-com-
ponents statistics can be directly combined with IBD
sharing statistics to form more-powerful tests of linkage.

A Simple Statistic for Discordant Sibling Pairs

As an example of the principle that IBD sharing statistics
and phenotype-given-IBD statistics can be combined to
improve power, we suggest a very simple composite sta-
tistic for discordant sibling pairs that essentially just adds
the traditional Haseman-Elston and mean IBD sharing
statistics. We show by simulation that our composite
statistic has higher power than either component alone
as long as the sib pairs ascertained are at least moderately
discordant.

The Composite Statistic

For discordant sibling pairs, we consider a linear com-
bination of the Haseman-Elston statistic (which stems
from the distribution of trait given IBD status) and the
mean IBD sharing statistic. If we let denote the Has-b̂HE

eman-Elston slope estimate, and denote theˆ ˆp 1 2pn,1 n,2

mean IBD sharing in the n sibling pairs, we define our
composite statistic by

ˆ ˆ ˆb p 1 2p 2 1HE n,1 n,2w 1 w (5)HE IBD Îˆ ˆ ˆÎ Var(p 1 2p )n,1 n,2Var(b )HE

so that ; that is, the pair of weights2 2w 1 w = 1HE IBD

falls on the unit circle. In other words, we(w ,w )HE IBD

standardize each statistic to have a standard normal dis-
tribution for n large, then form a linear combination so
that the resulting composite test statistic has a standard
normal distribution under the null hypothesis (this as-
sumes the components’ independence, which relies on
theoretical arguments detailed earlier). Use of the Has-
eman-Elston test alone corresponds to a weighting
choice of ; use of the mean IBD test alone corre-(1,0)
sponds to a choice of . The optimal weights—those(0,1)
which maximize power—will, in general, depend in
complex ways on the interplay of the ascertainment
scheme and the unknown genetic model for the disease.
However, we will show in simulations and applications
that even an ad hoc choice of weights can lead to sub-
stantially increased power to detect linkage, because,
even if our ad hoc weight choices are not optimal, they
will typically be better than the de facto selection of

or made, respectively, when either Haseman-(1,0) (0,1)
Elston or the mean IBD test is used alone.

Simulation Methods

We simulate sib-pair data from a simple additive QTL
model. Let and be the trait values for the siblingsX Xi,1 i,2

of pair i, and suppose that

X = m 1 g 1 ei,1 i,1 i,1

and

X = m 1 g 1 e . (6)i,2 i,2 i,2

Here m is the overall trait mean (set to ), (form = 0 gi,k

) is the genetic effect of the QTL, and is en-k = 1,2 ei,k

vironmental noise.
We model the QTL with equifrequent codominant al-

leles D and d, so that the genetic effect is

g = 11 for a DD individuali,j

= 0 for a Dd individual, and

= 21 for a dd individual.

For purposes of simplicity in the simulation, we further
let and let the correlation betweene ∼ N(0,t = 1) ei,k i,1

and , which represents environmental correlation, beei,2

0.20. The genetic variance for this model is , and the1
2

heritability—defined as the ratio of genetic variance to
the sum of the genetic and environmental variances—is

.1
3
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Table 1

Empirical Type I Error of Three Linkage Tests

Sample Size
Haseman-

Elston
Mean
IBD Composite

Population sample:
200 .0012 .0003 .0006
500 .0005 .0005 .0007
800 .0010 .0003 .0003
1100 .0009 .0002 .0007
1400 .0012 .0006 .0006

MDSPs:
200 .0013 .0005 .0006
250 .0010 .0006 .0006
300 .0013 .0002 .0008
350 .0006 .0002 .0011
400 .0007 .0005 .0008

EDSPs:
25 .0022 .0002 .0003
50 .0015 .0005 .0003
75 .0010 .0007 .0004
100 .0010 .0007 .0007
125 .0014 .0003 .0004

We simulate data from this model for discordant sib-
ling-pair studies, in which we ascertain only siblings for
whom one trait value falls into the lower tail of the trait
distribution and one into the higher tail. We examine
three ascertainment schemes: a population sample, mod-
erate discordance, and extreme discordance. We simu-
late a population sample of sib pairs for two reasons.
This will give us an idea—given our model—of how
many sib pairs would need to be ascertained and gen-
otyped to match the power of the discordant designs,
which must ascertain (or at least screen) many sib pairs
but must contact and genotype relatively few. Also, this
simulation acts as a cautionary example of when the
composite approach would be very bad indeed. In a
population sample, the IBD sharing approach is pow-
erless, so combination of any such statistic with an oth-
erwise useful Haseman-Elston test will result in a de-
graded linkage-test statistic. We next introduce the
concept of moderately discordant sibling pairs (MDSPs).
In analogy with EDSPs, a MDSP is one in which the
siblings fall into a much larger and more easily attainable
set of discordant trait-distribution tails. Here we arbi-
trarily define these as the lower and upper 35% of the
distribution. Finally, we simulate extremely discordant
sibling pairs (EDSPs), defined as having one sib trait fall
into the top 10% of the population and the other into
the bottom 10%.

We ascertain groups under the hypotheses of no link-
age ( ) and of complete linkage ( ) between the1v = v = 02

QTL and the marker, which is assumed to have eight
equally frequent alleles in the population. We simulate
only one marker, and so use estimates of based onlyp̂

on that marker. We assume the standard normal distri-
bution for the behaviors of our test statistics, so that a
specified significance level (we used , one-sided,a = 0.1%
throughout our simulations) easily determines a rejec-
tion region. Since all our tests for discordant sibling pairs
reject for large negative values of the test statistics, our
rejection region is , where 23.09 is the .001(2`, 2 3.09)
quantile for a standard normal distribution. The data
simulated under the null hypothesis of no linkage were
used to confirm that the statistics follow the expected
standard normal distribution for , and that they1v = 2

have acceptable Type I errors. See table 1.
No linkage between a candidate locus and a QTL

implies that (i.e., that and are independent)b = 0 F ZHE i i

and that the siblings should share 0, 1, or 2 genes IBD
with probabilities . We test this joint1 1 1{p ,p ,p } = ( , , )0 1 2 4 2 4

hypothesis with , and the composite testˆ ˆ ˆb p 1 2pHE n,1 n,2

(5). We expect that the composite will be more powerful
than either Haseman-Elston or allele sharing alone
whenever the latter two both have some reasonable
power to detect linkage. Our purpose in examining this
statistic is to demonstrate that very simple combinations

of existing statistics can yield improvements over stan-
dard methods in appropriately ascertained samples.

Simulation Results

We display in figure 1.1.a the approximate power (on
the basis of 10,000 simulations and under the assump-
tion of a one-sided significance level of ) fora = 0.1%
sample sizes ranging from 200 to 1400 sibling pairs,
under the assumption of random ascertainment from the
population. As we expect, the mean IBD test of linkage
is useless here: Since the sib pairs are randomly picked
from the population without regard to trait values, their
IBD status at the QTL follows the proportions1 1 1( , , )4 2 4

expected under no linkage. The most powerful of our
three tests is Haseman-Elston. The composite test per-
forms noticeably worse than Haseman-Elston. This is
expected, since it combines the useful information which
constitutes the Haseman-Elston test with the random
noise of the mean IBD statistic and, hence, loses power.
The ideal weights under this scenario are (w ,w ) =HE IBD

.(1,0)
Figures 1.1.b and 1.1.c show the joint distribution of

the normalized Haseman-Elston slope estimates and nor-
malized mean IBD statistics under the hypotheses of no
linkage and complete linkage, respectively, for a sample
size of 200 sib pairs. We see that the joint distribution
from data simulated with no linkage (figure 1.1.b) ap-
pears to have uncorrelated components with means
about the origin. With linkage, the components still ap-
pear uncorrelated, but the overall mean of the Haseman-
Elston component shifts away from zero, while the mean
IBD statistic retains an overall mean near zero (figure
1.1.c).



Figure 1 Power curves and scatter plots of the component test statistics over 10,000 replications for the simulation experiment. 1.a–1.1.c
refer to the linkage analysis with a population sample of sib pairs. 1.a, power curves when for the Haseman-Elston test (- - - - - - - -),v = 0
the mean IBD test (— — — —) and the composite test (————) over the five sample sizes considered. 1.b and 1.c, paired values for the
Haseman-Elston test statistic and the mean IBD test for the cases and , respectively, for a population sample of 200 sib pairs. 2.a–2.c1

v = v = 02
show the corresponding plots for MDSP samples. In 2.b and 2.c, 200 MDSPs are analyzed in each of the 10,000 replications for and1

v = 2
, respectively. 3.a and 3.c show the corresponding plots for EDSP samples. In 3.b and 3.c, 100 EDSPs are analyzed in each of the 10,000v = 0

replications for and , respectively.1
v = v = 02
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Figure 1.2.a shows power (for , one-sided)a = 0.1%
computed for a range of 200 to 400 moderately dis-
cordant sibling pairs, so that one has a trait value below
the 35% quantile, while another has a trait value above
the 65% quantile. On average, we screen 6.2 sibling
pairs in our simulation to find each such MDSP. Here
Haseman-Elston is less powerful than the mean IBD sta-
tistic, and both are less powerful than the composite
statistic with ad-hoc equal weights .1 1(w ,w ) = ( , )Î ÎHE IBD 2 2

Figures 1.2.b and 1.2.c show the joint distribution of
the Haseman-Elston slope estimates and mean IBD sta-
tistics in the case of moderate ascertainment for 1v = 2

and , respectively. With selective ascertainment, thev = 0
mean IBD statistics derived from data simulated assum-
ing linkage are not centered about zero anymore, as they
were in figure 1.1.c. Note also that we can see here
empirically that the Haseman-Elston slope estimates
(components of in our theoretical derivation) are un-ŵ

correlated with the mean IBD estimates (functions of
), as we expect on the basis of (4), and that the lackp̂

of correlation holds for both no linkage and complete
linkage in the simulated data.

Finally, we consider the approach of ascertaining ex-
tremely discordant sibling pairs in QTL analysis. Here
we require that one sibling fall below the quantile10%
and the other above the quantile in order to be90%
included in the linkage study. This approach is well-
known to be very powerful, but can be difficult to im-
plement because so many families must be screened in
order to find the discordant siblings. In our simulation,
over 158 families are screened on average to find each
discordant sibling pair. The figure 158 is specific to our
study, but in genetic models for which the discordant
sibs are easier to find, they are often less powerful, so
the problem is not easily circumvented. Risch and Zhang
(1996) discuss this issue in more detail.

Figure 1.3.a shows approximate power curves (again
for a one-sided significance level of ) for oura = 0.1%
three tests, when the numbers of subjects range from 25
to 125. Since we expect that the IBD sharing statistic
will be far more powerful here than the Haseman-Elston
test, equal weights are inappropriate. For EDSPs, we
propose as a conservative ad-hoc choice to use

5p 5p
(w ,w ) = cos ,sin ≈ (.259,.966) .HE IBD [ ( ) ( )]12 12

We discuss this choice and other issues of weighting in
a subsequent section. The mean IBD statistic is far more
powerful than Haseman-Elston here, so that the im-
provement of the composite statistic over the mean IBD
test with this model is very modest. Nonetheless, the
Haseman-Elston component represents useful data
which would otherwise be discarded, so that there seems
to be little reason not to take the slender advantage

offered by a composite statistic, given the amount of
time and effort going into a typical linkage study.

The joint distributions for the Haseman-Elston slope
and mean IBD estimates under the null and alternative
hypotheses are displayed in figures 1.3.b and 1.3.c, re-
spectively, for a sample size of 100 sibling pairs. We see
once again that under the hypothesis of no linkage, the
normalized test statistics in repeated studies appear to
be uncorrelated and scattered about the origin. Under
complete linkage, and with highly selective discordant
ascertainment, the lack of correlation remains, but the
mean IBD statistics are centered far below zero. The
Haseman-Elston slope estimates are also centered below
zero, though their center appears comparable to what
we saw with less selective ascertainment.

Application to GAW 10 Data

To demonstrate a practical application of our method,
we apply it to some data from the tenth Genetic Analysis
Workshop (GAW). This is very high-quality simulated
data, so that the genetic etiology of the observed quan-
titative traits will be known, but the situation has the
complexity of a real study. We focus on nuclear family
data from problem 2A of GAW 10. The scope of the
simulation is too extensive to recount here, so we refer
the reader to MacCleur et al. (1997) for details, and
instead use a small piece of this complex data set to
illustrate our method. For demonstration purposes, we
arbitrarily pick the fourth quantitative trait, which is a
complex trait influenced by several genes including
MG4, located on chromosome 8. We attempt to detect
and locate the gene on chromosome 8 which contributes
to the trait.

A great deal of previous work has been done on the
GAW 10 data set using both trait-given-IBD methods
(see, e.g., Amos et al. 1997; de Andrade et al. 1997;
Pugh et al. 1997) and allele sharing statistics (see, e.g.,
Rogus et al. [1997]; Gu et al. [1997]; Kruse et al. [1997];
and Rochberg et al. [1997]). We combine these two lines
of inquiry by ascertaining families with moderately dis-
cordant sibling pairs and analyzing them with our com-
posite statistic. The composite statistic based on our
theoretical independence result is what makes ascer-
taining MDSPs a sensible strategy for QTL analysis.
Moderately discordant sibling pairs are relatively easy
to find (compared to EDSPs), require the genotyping of
only a subset of those phenotypically screened, and yield
evidence of linkage in two independent ways: through
trait-given-IBD statistics (e.g., Haseman-Elston regres-
sion) and through IBD-sharing statistics (e.g., the mean-
IBD test). This approach provides solid evidence for
linkage with much smaller populations than are usually
required for discordant sib-pair analyses. The MDSPs
ascertained are, of course, less informative than ex-
tremely discordant ones. They are, however, much easier
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Figure 2 LOD scores for the three methods, computed at 1-cM spacing along chromosome 8 for 204 moderately discordant sibling pairs
taken from the first 717 (i.e., three replications) GAW10 problem 2A nuclear families. Ascertainment is such that one sib falls into the top
35% of the trait distribution and the other into the bottom 35%.

to find, and we demonstrate that the LOD score at the
QTL is increased by adding in information from a trait-
given-IBD statistic.

To demonstrate the moderately discordant ascertain-
ment scheme, we take as a population the first three
independent replicates of 239 nuclear families, for a
total population of 717 nuclear families. In each family,
we take the most discordant pair of sibs such that one
falls into the lower of the quantitative-trait dis-35%
tribution and one into the upper . Such an ascer-35%
tainment scheme yields 204 moderately discordant pairs
from the first 717 families screened. We analyze these
pairs using MAPMAKER/SIBS (Kruglyak and Lander
1995). We first scan chromosome 8 for linkage using
Haseman-Elston regression and store the resulting nor-
malized slope estimates in a file. Next, we compute mul-
tipoint estimates of IBD sharing for each sib pair using
output from the “dump ibd” command line option. Fi-
nally, we compute the normalized test statistics from
both Haseman-Elston and mean IBD sharing, then use
equal weights to compute the com-1 1(w ,w ) = ( , )Î ÎHE IBD 2 2

posite statistic using both tests, and convert all three to
lod scores for plotting.

The results are shown in figure 2. We see that the
LOD score of the composite test near the MG4 locus

on chromosome 8 is highly significant (exceeding 3.8),
although neither Haseman-Elston nor the mean IBD test
has a LOD score in excess of 2.71, evidence of linkage
which in a real genome scan probably would be re-
garded as inconclusive at best and perhaps would be
ignored altogether. Furthermore, the peak of the com-
posite test curve is closer to the MG4 locus than is that
of its most powerful component, the Haseman-Elston
curve. This occurs because although the Haseman-Els-
ton curve has two peaks of near-equal height to the
right of the true locus, the independent mean IBD sta-
tistic has its peak—albeit a low peak—precisely over
the MG4 locus. In this instance, the mean IBD test is
much less powerful than Haseman-Elston, but it serves
both to greatly increase the signal at the gene locus and
to dampen the signal (relative to the true peak) at false
peaks. Finally, we note that assigning equal weights is
probably not optimal in this case. Nonetheless, the ad-
hoc assignment of equal weights markedly improves
performance over the component statistics, presumably
because it is closer to the (unknowable) correct set of
weights than is the choice of or(w ,w ) = (1,0)HE IBD

, inherent in the application of Has-(w ,w ) = (0,1)HE IBD

eman-Elston or the mean IBD test, respectively. This
demonstrates that suboptimal and arbitrary weights still
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Table 2

Power Comparison of Old Haseman-Elston, New Haseman-Elston, Weighted
Haseman-Elston, and Variance Components for the Three Ascertainment
Plans (Population Sample, Moderate Discordance, and Extreme Discordance)
Used in the Simulations

Ascertainment Scheme

Old
Haseman-

Elston

New
Haseman-

Elston

Weighted
Haseman-

Elston
Variance

Components

Population .2220 .2097 .2971 .2988
Moderate discordance .3582 .3588 .0009 .0023
Extreme discordance .3230 .3310 .0018 .0022

NOTE.—Sample size is fixed at 200, , and one-sided.v = 0 a = 1%

lead to substantially better performance in practical
situations.

In summary, both Haseman-Elston and the mean IBD
test provide some evidence of linkage, although it is not
“conclusive” (i.e., it does not have a LOD score 13) for
either method. Our independence result and composite
statistic combine these two tests to make a stronger case
for linkage, while using only 204 sibling pairs ascer-
tained from a population of 717 nuclear families.

Improvements to the Composite Statistic

In this section we consider two questions. First, is Has-
eman-Elston regression a good choice for the trait-given-
IBD component of our test statistic? Second, what are
optimal—or at least good—choices of weights for dif-
ferent ascertainment schemes and genetic models?

Is Haseman-Elston the best choice for this composite
statistic?

Since the advent of the Haseman-Elston method (Has-
eman and Elston 1972), which regresses the sibs’ squared
trait difference on their mean IBD status at a locus, a
number of more sophisticated techniques have been in-
troduced for QTL detection in sib pairs. In this section,
we briefly review some of these methods, then present
simulation results to justify our choice of Haseman-Els-
ton regression. All the methods we discuss in this section
model sib traits conditional on sibs’ IBD status, so that
the resultant test statistics will all be uncorrelated with
IBD sharing statistics such as the mean IBD test.

Variance-components analysis (Amos 1994; Almasy
and Blangero 1998) has been applied to sib-pair data
(Fisher et al. 1999) and has been found to be quite pow-
erful (Fulker and Cherny 1996), though not as com-
putationally simple as Haseman-Elston regression.
Wright (1997) opened the door to improvements in the
Haseman-Elston method by pointing out that the sib
traits’ difference and sum conditional on IBD status are
statistically independent and, hence, can provide com-
plementary information for linkage analysis. Drigalenko
(1998) and Elston et al. (in press) attempt to apply

Wright’s findings by regressing the sibs’ centered trait
product on IBD status, a method we will refer to as “new
Haseman-Elston.” Recent work by W. F. Forrest (un-
published data) demonstrates that new Haseman-Elston
regression can lose substantial power because it fails to
weight the contributions of the squared trait difference
and mean-corrected sum by their disparate variances.
The mathematical forms of new Haseman-Elston and
Forrest’s extension, which we call “weighted Haseman-
Elston,” are sketched in Appendix C and will be dis-
cussed in more detail in future work.

We compared the old Haseman-Elston, new Hase-
man-Elston, weighted Haseman-Elston, and variance
components under our simulation model and three as-
certainment schemes, using 10,000 replications each for
a sample size of 200 sibling pairs. The old Haseman-
Elston is the simplest, best known, and most widely im-
plemented of these methods. Based on simulations, it is
also about as powerful as any of these methods in ap-
plications to discordant sib-pair data. Table 2 shows the
relative power of these methods to achieve significance
at the level, one-sided, for the three ascertain-a = 1%
ment schemes we used in our simulation.

In a population sample, we see that variance-com-
ponents analysis and weighted Haseman-Elston both
provide high power compared to old and new Haseman-
Elston. Old Haseman-Elston appears to be at least as
powerful as the new Haseman-Elston method. This fact
is due to the residual (i.e., environmental) correlation of
0.20 included in our QTL model. The relative power of
old and new Haseman-Elston can be shown to depend
heavily on this residual correlation.

In applications to both MDSPs and EDSPs, however,
we see that old Haseman-Elston does at least as well as
any of the other methods. The very low power of
weighted Haseman-Elston and variance components
stems from their heavy dependence on the distributional
assumption of approximate bivariate normality in the
sib-pair trait distribution. By ascertaining discordant sibs
exclusively, we dramatically violate this assumption. The
sibling pairs observed do not come from anything re-
motely resembling the approximate bivariate normal
trait distribution implicit in the QTL model (6) and ex-
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Figure 3 a, bivariate scatter plot of 5,000 trait pairs for simu-
lated sib pairs ascertained at random from the population. The points
are well described by a bivariate normal distribution. b, bivariate scat-
ter plot of 5,000 trait pairs for simulated sib pairs ascertained subject
to the restriction that one trait fall into the lower 35% of the trait
distribution and the other into the upper 35% of the distribution. The
points are restricted to two diametrically opposed regions because of
the ascertainment scheme and, thus, are not well described by a bi-
variate normal distribution.

emplified in figure 3a. By selecting, for instance, MDSPs,
we induce a very peculiar sampling distribution in the
observed traits, embodied in figure 3b. The ascertained
sib pairs have traits which are strongly negatively cor-
related and do not follow a bivariate normal distribu-
tion. The effect on weighted Haseman-Elston and sib-
pair variance components is catastrophic, since both are
derived from a bivariate normal trait-given-IBD model
with correlations increasing with increasing IBD status.
Both methods fail badly as a result. On the basis of this
simulation, we recommend against analyzing discordant
sibling-pair data with either weighted Haseman-Elston
or variance components. In discordant sib pairs, the fact
that old Haseman-Elston regression does not use all the
data in the bivariate distribution (Wright 1997) works
to its advantage, since the unused information seems to
be, in part, what is lost during the ascertainment process.

Given these findings and the widespread implemen-
tation of and familiarity with old Haseman-Elston, the
method seems a reasonable choice for the trait-given-
IBD component of our composite statistic. We reiterate,
however, that any other trait-given-IBD statistic (such as
new Haseman-Elston) can be used and the two com-
ponents will be independent.

Refining the Weights

One thing that is “simple” about our simple composite
statistic is that we combined the two components with
equal weights. There is no reason to expect this to be
optimal in general, and we now present a small inves-
tigation into picking sensible weights for a variety of
models and discordant ascertainment schemes.

The weights are constrained to fall on the(w ,w )HE IBD

unit circle (so that ), because this leads2 2w 1 w = 1HE IBD

to a convenient distribution for the composite statistic.
Since the two components are assumed to be normalized
so that, under the null hypothesis, they both have an
expected value of zero and unit variance, the unit circle
convention ensures that the composite statistic likewise
follows a standard normal distribution at unlinked loci.
Given the unit circle constraint, the weights can be sum-
marized into a single number, the angle measured from
the negative x axis to the weights in the third Cartesian
quadrant. For this angle v, the optimal weights are

.(w = cos (v),w = sin (v))HE IBD

For the two ascertainment schemes shown in our sim-
ulations above, the empirically determined optimal
weights are (0.615, 0.788) for the moderate ascertain-
ment and (0.256, 0.969) for the extreme ascertainment,
corresponding to respective angles of and . We527 757
perform further studies to determine the optimal weights
over a broader range of genetic parameters and ascer-
tainment schemes. We experiment with QTL frequencies
of 0.20 and 0.50, residual correlations of 0.20 and 0.40,
and heritabilities of 0.15 and 0.333. We then examine

these models under four ascertainment schemes.32 = 8
First, we ascertain a sibling pair if one sib falls above
the median and one below. We call this the (.50, .50)
scheme. Next we ascertain a sib pair for which one falls
into the top and one into the bottom of the35% 35%
distribution, which we call the scheme. Sim-(.35, .65)
ilarly, we consider a scheme and an extreme(.25, .75)

scheme. In each case, we screen two-child nu-(.10, .90)
clear families until we have 200 sib pairs, then compute
the Haseman-Elston test and the mean IBD test. We re-



1652 Am. J. Hum. Genet. 66:1642–1660, 2000

Table 3

Simulation-Based Optimal Weights for a Variety of Discordant Ascertainment Schemes and Genetic
Parameters

QTL
FREQUENCY

RESIDUAL

CORRELATION HERITABILITY

ASCERTAINMENT SCHEME TAIL QUANTILES

(LOWER, UPPER)

(.50, .50) (.35, .65) (.25, .75) (.10, .90)

.2 .2 .15 33.7 5 1.3 48.6 5 0.9 58.1 5 0.7 71.1 5 0.4

.2 .2 .33 34.6 5 0.5 50.1 5 0.4 61.0 5 0.3 73.9 5 0.2

.2 .4 .15 31.1 5 0.9 49.2 5 0.6 59.4 5 0.5 73.6 5 0.2

.2 .4 .33 33.1 5 0.4 51.6 5 0.3 63.0 5 0.2 75.6 5 0.1

.5 .2 .15 35.2 5 1.2 50.5 5 0.9 59.9 5 0.6 72.3 5 0.4

.5 .2 .33 35.8 5 0.5 52.1 5 0.4 62.5 5 0.3 75.7 5 0.2

.5 .4 .15 32.6 5 0.9 49.8 5 0.6 61.1 5 0.5 74.4 5 0.3

.5 .4 .33 33.5 5 0.4 52.9 5 0.3 63.9 5 0.2 77.5 5 0.1

NOTE.—We consider QTL frequencies of .2 and .5, residual correlation of and , heritabilityr = .2 r = .4
values of and , and discordant ascertainment schemes in which the lower and upper tails1h = 0.15 h = 3
range from very moderate (.50, .50) to extreme (.10, .90). Presented are 95% confidence intervals for angles
measured in degrees from the negative x axis into the third Cartesian quadrant. For an angle v, the optimal
weights are given by cos(v) and sin(v).w = w =HE IBD

peat this process times and use the results to10,000
estimate the optimal weights for that scenario.

We present the results in table 3. Shown are point
estimates and confidence intervals for the angle95%
(measured from the negative x axis) denoting optimal
weights. For reference, our simulations’ choices of

for moderate discordance and1 1 5p( , ) (cos ( ),Î Î 122 2

for extreme discordance correspond to angles of5psin ( ))12

and , respectively. These weights could also be457 757
found by bivariate numerical integration (similar to the
work in Risch and Zhang 1996), but we found simu-
lation—which amounts to Monte Carlo integration—to
be sufficiently accurate and much more convenient.

The most heartening result in table 3 is that the
weights do not vary much within an ascertainment
scheme. This is very important, because the way that
data are ascertained is most often known, but the genetic
model is not. Note that this does not imply that the
component tests perform in similar ways across all ge-
netic models. In fact there are large changes in the power
to detect the QTL as we change the allele frequency,
residual correlation, and heritability. However, these
changes tend to happen in roughly the same way for
both Haseman-Elston regression and the mean IBD test,
so that the weights remain stable within an ascertain-
ment scheme. For example, if we increase heritability
from 0.15 to 0.33, keeping everything else the same, the
power of Haseman-Elston increases, but so does the
power of the mean IBD test. Since our weights measure
the relative strength of each component, they apparently
undergo only small changes across the models tested.
This means that a guess at ad hoc weights can be based
on the ascertainment scheme and expected to be nearly
correct for a variety of genetic models.

We note, for completeness, that the ideal weights de-

pend marginally on the quality of the IBD informa-
tion—that is, on the informativeness and density of the
markers. This is because the mean IBD sharing statistic
is normalized by a standard error that assumes perfect
IBD information (see Kruglyak et al. 1996). When the
IBD information is not perfect, the normalized statistic
has a variance slightly smaller than 1, making it slightly
less powerful than it would be if we could normalize it
by the correct variance. (This effect also explains why,
in table 1, the mean IBD test’s type I errors are slightly,
though consistently, smaller than .) The lossa = .0010
of power is reflected in the weights, which measure how
powerful the IBD sharing statistic is relative to the Has-
eman-Elston statistic. Our simulations use a single
marker with eight equifrequent alleles, which gives an
overall level of information similar to what is seen with
a 10-cM map of typical microsatellite markers. If we
had had perfect IBD information, the angles would have
come out slightly larger than those shown in table 3. If
we had had very poor IBD information (e.g., a single
marker with only a few alleles), the angles would have
been slightly smaller. We reran a few simulations with
different levels of IBD information and saw changes in
the angle of roughly – . We do not expect this to17 37
make much practical difference.

Discussion

We have described a theoretical framework unifying two
frequently applied approaches to QTL linkage analysis.
The foundation of our approach is the distinction be-
tween the inheritance vector distribution and the con-
ditional distribution of phenotypic trait given the in-
heritance pattern. We observe that the two distributions
can carry complementary information, because the null
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hypothesis of no linkage implies two separate condi-
tions:

1. The inheritance vectors are uniformly distributed.
This allows calculation of the null distribution of any
function of the inheritance vectors. For example, full
siblings should share 0, 1, or 2 genes IBD in the familiar
proportions of at a locus unlinked to the gene1 1 1( , , )4 2 4

controlling the ascertainment-determining phenotype.
2. Phenotypic traits are independent of the inheritance

vectors at an unlinked locus, so that the distribution of
trait conditional on inheritance vector is simply the mar-
ginal distribution of the trait, or .f (fFz) = f (f)w w

Traditional allele-sharing methods test for deviations
from the first condition, while Haseman-Elston regres-
sion, its extensions, and variance-components methods
test for deviations from the second. We posit in (1) and
(2) a likelihood function which combines evidence from
both kinds of deviation simultaneously. We derive in
Appendix B an approximation that includes common
methods such as Haseman-Elston regression and vari-
ance-components analysis as special cases of the first
half of our likelihood function. The observed data log-
likelihood itself separates in practice as L(w,p) =

, so that the maximum-likelihood estimatesL(w) 1 L(p)
of model parameters w and p will be approximately
independent. We applied this independence result to cre-
ate a composite statistic that can increase the power to
detect linkage using discordant sibling pairs.

Our simulation results show that the composite sta-
tistic increases power only very slightly for EDSPs cho-
sen according to the usual definition of one sibling in
the top 10% of the trait distribution and one in the
bottom 10%. However, when applied to MDSPs (one
sibling each in the top 35% and bottom 35%), the
composite statistic increases power enormously. This
increase in power means that MDSPs may be a very
sensible choice for many linkage studies. For the trait
model used in our primary simulation, achievement of
80% power with EDSPs required that ∼8,700 pairs be
screened to ascertain 55 subjects. For MDSPs, we
needed to screen only 1,850 and genotype 300. With a
population sample, we needed to ascertain and genotype
about 1,300 pairs with Haseman-Elston regression. Al-
though this number drops to about 950 if variance com-
ponents or weighted Haseman-Elston is applied (as is
likely with a population sample), it still represents a
more than three-fold increase in the amount of geno-
typing required over that in MDSP analysis. Our choice
of the (.35,.65) criterion as our definition of an MDSP
was somewhat arbitrary. In any particular study, a more
or less extreme criterion could yield a more convenient
ratio of phenotyping to genotyping effort. We did not
make any attempt to describe an “optimal” criterion,

since that would depend on the relative costs of screen-
ing/phenotyping and genotyping.

Overall, we recommend the use of our composite sta-
tistic whenever discordant sibling pairs are being used
for QTL mapping. For EDSPs, it is likely that the benefit
will be small, but there is no reason not to go ahead
and gain that small advantage. The two parts of the
statistic can easily be computed with standard packages,
and then weighted and added. For our (.35, .65) cri-
terion, equal weights seem very close to optimal under
a variety of trait models. Table 3 suggests weights for
other ascertainment schemes. These weights are specific
to our use of the original Haseman-Elston statistic and
so would not necessarily be appropriate if a different
“trait given IBD” statistic were used. However, we stress
that, despite the availability of newer competitors, we
found Haseman-Elston regression to be the best choice
for this application.

Although all of our discussion has focused on dis-
cordant sibling pairs, other applications of our inde-
pendence result are possible. The most immediately ob-
vious extensions are to concordant sibling pairs and to
mixed concordant and discordant designs. Studies of
concordant siblings can arise either because the siblings
are ascertained explicitly on the basis of their quanti-
tative phenotypes or—more frequently in the study of
sib pairs—because they are “affected” by some condi-
tion so that both have unusually high or low values for
some associated quantitative trait. A recent example of
an affected-sib-pair study with concordant quantitative-
trait data is the investigation of Type 2 diabetes in Finn-
ish sib pairs by Ghosh et al. (1999). In a concordant-
sibling-pair design, the approach we outlined carries
over with few changes. The “trait given IBD” compo-
nent should be one for which the phenotype function
varies noticeably as a function of IBD status. Since trait
differences for concordant sib pairs are conditioned to
have little variability (this is, after all, the definition of
concordance), standard Haseman-Elston regression is
not a good choice. Taking a cue from Wright (1997),
we suggest regressing the mean-corrected squared trait
sum on expected IBD status, and looking for a signif-
icantly positive slope to indicate linkage. A sensible
composite test is then a linear combination of the mean
IBD test and the normalized regression slope of squared
trait sum given IBD status. It may also be reasonable
to apply variance-components methods as the trait-
given-IBD component, though we have not explored
potential composite statistics for this choice in any
detail.

If concordant and discordant pairs are used together,
as in the EDAC design of Gu et al. (1996), then Has-
eman-Elston and trait-sum regression would be carried
out separately within the discordant and concordant
sibs, respectively. There would be four weights to assign
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in such a statistic, but we have not investigated what
those should be. We note that just as the mean IBD test
is generally less powerful for concordant sib pairs than
for discordant ones (Risch and Zhang 1995), squared
trait sum regression is less powerful than Haseman-Els-
ton regression (unpublished data). The upshot is that
although a composite test based on concordant sib pairs
will typically be more powerful than one based on either
concordant component alone, for a given sample size,
it may still be less powerful than one based on discor-
dant sibs. On the other hand, concordant sibs are easier
to find than are discordant sibs for many quantitative
traits, so ascertaining a larger number of them may not
be a problem.

A less obvious but potentially useful application of
our independence result is to studies that use larger ped-
igrees ascertained because numerous family members
have extreme trait values. Standard variance-compo-
nents methods could provide a linkage test based on the
distribution of phenotype given IBD status. For an IBD
sharing statistic, promising options are statistics in-
tended for linkage studies of qualitative (binary) traits,
such as (see McPeek 1999 for a recent discussionSpairs

of this and other such statistics). The two statistics could
then be combined into a composite, as in our discor-
dant-pair work. The composite might in theory increase
power, although the practical details need to be inves-
tigated carefully.

Our work here may facilitate similar composite QTL
statistics in some experimental crosses. For a simple
example of how this might be done, consider a standard
backcross between a pure line (A) and a hybrid line (H)
with different trait distributions, resulting in offspring
which are either A or H at each marker. Suppose further
that the pure line (A) is susceptible to a rare condition
of interest, associated with high (or perhaps low) trait
values. We might ascertain affected subjects (presuma-
bly with high trait values) and form two statistics:

1. A regression of quantitative trait on the probability
of being type A at a candidate locus.

2. An allele-sharing statistic examining, for example,
the average of probabilities of subjects ascertained being
of type (A) at a locus, and considering its divergence
from the expected value of .1

2

We could then combine the two statistics, as discussed
here, in hopes of getting a more powerful test. We be-
lieve that many more possibilities exist for different
types of experiments, and this remains an area for future
research.

There are also QTL-mapping statistics in the litera-
ture that do not fall into either the IBD sharing or the
“trait given IBD” categories but rather draw on both
sources of information jointly. Zinn-Justin and Abel
(1999) extend the work of Commenges (1994) and
Commenges et al. (1994) to introduce IBD information
into the weighted pairwise correlation (WPC) statistic.
We examined its performance on a limited basis and
found the new WPC test nearly as powerful as our com-
posite test for discordant sibs, but much less powerful
in applications to concordant siblings than our concor-
dant statistic proposed above (unpublished data). In ad-
dition, critical values and standard errors for the WPC
must be determined through simulations (Zinn-Justin
and Abel 1999), there is currently no multipoint for-
mulation, and the test is not available in widely used
packages, as are the components of our discordant com-
posite test. Very recently, both Alcais and Abel (1999)
and Dudoit and Speed (2000) have turned the trait-
given-IBD distribution around, and devised tests of link-
age based on IBD data conditioned on phenotypes,
which they argue is the more sensible formulation, since
ascertainment is based on phenotype. In both cases, the
resultant test statistic is some sort of allele-sharing sta-
tistic, with the information on quantitative-trait value
entering via a pair-specific weight function.
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Appendix A

Details of the Observed-Data Log-Likelihood

Consider the complete-data log-likelihood given in (1). Noting that

E(d FY ) = P(Z = jFY )ij i i i

and that

E(log f (FFZ = j)FY ) = log f (FFZ = j) ,w i i i w i i
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we get the observed-data log-likelihood

∗[ ]L(w,p) = E L (w,p)FY
∗ ∗[ ] [ ]=E L (w)FY 1E L (p)FY

n k k n

= log f (FFZ = j) # P(Z = jFY ) 1 log p P(Z = jFY )OO O Ow i i i i j i i
i=1 j=1 j=1 i=1

= L (w,p) 1 L (w,p) . (A1)1 2

In general, the probability depends on the locus-specific values of both w and p, but when computedP(Z = jFY )i i

under the null hypothesis of no linkage to the candidate locus, it depends on neither. In that case, the maximum
likelihood estimator is given byp̂

nO P(Z = jFY )i i
i=1

p̂ = k nj O O P(Z = jFY )i i
j=1 i=1

n1
= P(Z = jFY ) (A2)O i in i=1

for (which is analogous to the usual MLE for a multinomial). In order to quantify the dependence ofj P {1,...,k}
on w, we can rewrite it using Bayes’ Rule asP(Z = jFY )i i

P(Z = jFY ) = P(Z = jFM ,F )i i i i i

f (FFZ = j)w i i= P(Z = jFM ) #i i f (FFM )w i i

f (FFZ = j)w i i= P(Z = jFM ) # . (A3)ki i O f (FFZ = l)P(Z = lFM )w i i i i
l=1

Equation (A3) facilitates understanding of when the observed-data log-likelihood separates into two distinct func-
tions of w and p, respectively. If the marker data give us perfect information on the inheritance vectors at aM i

locus, we get for some j, so that the dependence on w of the second summand inP(Z = jFY ) = P(Z = jFM ) { 1i i i i

the observed-data log-likelihood disappears. Alternately, under the null hypothesis of no linkage, f (FFZ = j) =w i i

for all values j and l, so that the above expression for reduces to . In practice,f (FFZ = l) P(Z = jFY ) P(Z = jFM )w i i i i i i

researchers generally replace by , computing the inheritance configuration–sharing proba-P(Z = jFY ) P(Z = jFM )i i i i

bilities at each locus under the null hypothesis of no linkage to that locus, and yielding an observed-data log-
likelihood (3) for which the MLEs and are asymptotically independent of one another.ˆ ˆw p

A1. General Maximum-Likelihood Estimates

We sketch here a general approach for determining the MLEs and from the observed-data log-likelihoodˆ ˆw p

with no assumptions about linkage at the locus considered, or equivalently for . For notational convenience,1v P [0, ]2

denote the IBD sharing probabilities conditional on the marker data and the values of by ,{M } p = {p ,...,p } {p }i 1 k ij

where . MLEs can be computed via the EM algorithm (Dempster et al. 1977). To begin,ˆ ˆp = P(Z = jFM ) (w,p)ij i i

initialize the parameters to their values under the null hypothesis. In the E-step, first estimate the values of the
using the current value of p, marker data , and Bayes’s Rule. Next, use the , the trait data , and{p } {M } {p } {F }ij i ij i

the current value of w to compute values using (A3). In the M-step, we use the (momentarily) fixed{P(Z = jFY )}i i

values to maximize (A1) with respect to . The value of p maximizing (A1) is given as a function{P(Z = jFY )} (w,p)i i

of the values by (A2), whereas the value of w maximizing (A1) will depend on the parametric model{P(Z = jFY )}i i

specified for modeling the trait given the IBD sharing status. The E-step and M-step are then iterated until con-
vergence is reached. In order for the MLEs to be useful, the data must be well described by the model. As discussed
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earlier, inducing an ascertainment scheme on the data will tend to make the observed distribution of unwieldy,(FFZ)
so the model should be carefully thought out and tested if this course is taken.f (fFz)w

Appendix B

Approximations Showing Links to Haseman-Elston and Variance Components

Here we demonstrate a link between our model as written for phenotype given IBD status and more traditional
modeling approaches to quantitative-trait data such as Haseman-Elston and variance components. Since imple-
mentations of these methods use only marker data to compute IBD sharing, we will assume that P(Z = jFY ) =i i

throughout. Consider the first term of the complete-data log-likelihood . For simplicity, consider∗P(Z = jFM ) L (w)i i

only the term for the ith pedigree, and notice that we can rewrite the complete-data log-likelihood as∗L (w)i

k

∗L (w) = d log f (FFZ = j)Oi ij w i i
j=1

k

= 1(Z = j) log f (FFZ = j)O i w i i
j=1

= log f (FFZ ) .w i i

Now, define the expected value of the IBD configuration label given the data by . Since takesZ Y m = E [ZFY ] Zi i i i i i

values in , we will have{1,...,k}

k

m = j # P(Z = jFY )Oi i i
j=i

which will have a meaningful value only if the labels have some tangible interpretation. In Haseman-Elston{1,...,k}
regression, for instance, the inheritance configuration is incorporated through pairwise IBD sharing values in

, and is the expected IBD sharing given the marker data between two relatives.{0,1,2} m i

Similarly define the complete-data log-likelihood , written as a function of IBD configuration , by the∗L (w) Zi i

function , where we assume that G is a differentiable function of . A Taylor expansion ofG(Z ) = log f (FFZ ) Zi w i i i

about , followed by a conditional expectation given the observed data, yields the first summand of theG(7) m i

observed-data log-likelihood, followed by a useful approximation:

∗[ ]L (w) = E L (w)FYi i

[ ]= E G(Z )FYi i

2dG 1 d G2[ ] [ ]=G(m ) 1 E (Z 2 m )FY (m ) 1 E (Z 2 m ) FY (m ) 1 ...,i i i i i i i i i2dZ 2 dZ
2[ ]since E[(Z 2 m )FY ] = 0 and E (Z 2 m ) FY = Var(ZFY ) , we get the approximationi i i i i i i i

L (w) ≈ G(m )i i

[ ]= log f (FFZ = E ZFY )w i i i i

[ ]=log f (FFZ = E ZFM ) (B1)w i i i i

where under the null hypothesis of no linkage to the locus of interest (see Appendix A). TheE [ZFY ] = E [ZFM ]i i i i

approximation here consists of replacing the random inheritance configuration label with its expected valueZi

conditioned on the observed data, denoted . This approximation will approach exactness as the marker datam i

become precise (i.e., as inheritance vector information at a locus improves), reflected intuitively by the fact that
as the marker data improve to give us perfect information about . Our purpose in deriving (B1)Var(ZFY ) r 0 Zi i i
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is to bridge the gap between our theoretical development and the parametric form of methods currently applied
in real linkage studies.

As an example of the above approximation, consider how the Haseman-Elston regression method fits into this
framework. For a sibling pair with trait values and , define the phenotype by . The distri-2X X F = (X 2 X )i,1 i,2 i i,1 i,2

bution of is very often—practically speaking—unknowable, since it depends on the trait distribution in theFi

population, the joint distribution of the trait between siblings, and the ascertainment process. We rely on the robust
nature of linear regression: under the hypothesis of no linkage, the true regression slope is zero under very modest
conditions (e.g. Var or E ). For purposes of this example, we assume normality of . For , we use4F ! ` X ! ` F Zi i,j i i

the usual sib-pair complete data of 0, 1, or 2 genes shared IBD at the candidate locus.
Our model for the squared trait differences can now be written as so that the first half of2FFZ ∼ N(a 1 bZ ,j )i i i

the observed-data log-likelihood is

n 2

L(w) = log f (FFZ = j) # P(Z = jFY )OO w i i i i
i=1 j=0

n 2 2n 1 F 2 a 2 bji= 2 log 2p 2 n log j 1 2 # P(Z = jFY ) .OO i i( )2 2 ji=1 j=0

The approximation (denoted ) using (B1) isL̂(w)

n

L̂(w) = log f (FFZ = E[ZFM ])O w i i i i
i=1

n 2n 1 F 2 a 2 b # E{ZFM }i i i= 2 log 2p 2 n log j 1 2 ,O ( )2 2 ji=1

from which the MLE of b under is just the Haseman-Elston estimate of slope when the squared trait differenceˆ ˆb L(w)
F is regressed on expected IBD status. This shows that if we formulate the observed data log-likelihood (A1) for
the sib-pair problem, then approximate the trait-given-IBD portion using (B1), maximum likelihood estimation will
yield the Haseman-Elston slope estimate. Hence, the first summand of our log-likelihood function is “almost”
Haseman-Elston in this case.

An analogous approximation is now developed to include variance-components methods under this modeling
approach. The basic framework for variance-components analysis of quantitative traits is described in Amos (1994).
For a group of relatives’ trait values , we assume a multinormal distribution for the values, wherem F EF = Xbi i i i

for some known matrix of nonmarker covariates and unknown coefficients b. The covariance structurem # p Xi i

of is given byFi

Cov(F ,F )i,j i,l

2 2 2 2= l j 1 g j 1 z j 1 1(j = l)j , (B2)j,l a j,l d j,l g e

where

1. the additive component of genetic variance is weighted by , the expected proportion of genes shared2j la j,l

IBD at the candidate locus by relatives j and l, given the family’s marker data;
2. the dominance component of genetic variance is weighted by , the probability that j and l share two2j gd j,l

genes IBD at the candidate locus;
3. the polygenic component of variance is weighted by , the expected fraction of genes shared IBD by j and2j zg j,l

l at an arbitrary locus, based solely on their familial relationship (e.g., for full siblings, for half siblings,1 1z = z =2 4

for first cousins, etc.). Note in particular that does not depend on the marker data or the inheritance1z = zj,l8

vector; and
4. each individual trait value contains a component of environmental variance .2je

The fundamental change under our modeling framework is that we redefine the covariance to depend on a vector
function of the ith family’s nonfounders’ inheritance vector , so thatZi
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Cov(F ,F FZ )i,j i,l i

2 2 2 2= h (Z )j 1 h (Z )j 1 z j 1 1(j = l)j , (B3)l i a g i d j,l g ej,l j,l

where in close analogy to the above definitions,

1. = 0, , or 1, as the number of genes j and l share IBD at the candidate locus has value 0, 1, or 2,1h (Z )l i 2j,l

respectively.
2. = 1 if j and l share two genes IBD at the locus, and has value 0 otherwise.h (Z )g ij,l

We can then write the first summand of the log-likelihood of the ith family as

k

L (w) = log f (FFZ = j) # P(Z = jFY )Oi b,S i i i i
j=1

km 1 1i ′ 21= 2 log 2p 1 2 log FSF 2 (F 2 X b) S (F 2 X b) # P(Z = jFY ) , (B4)O j i i j i i i i{ }2 2 2j=1

where is the number of members in family i, and is the covariance matrix of , i.e., the covariancem S (FFZ = j)i j i i

of the data given that the inheritance vector is in fact the jth one in some enumeration, and is theP(Z = jFM )i i

probability that family i’s inheritance vector is of type j, given their trait and marker data . Such a likelihoodYi

will be computationally infeasible for even moderate values of . Our intent, however, is not to propose a practicalmi

method, but rather to show how applying the approximation given in (B1) to (B3) and (B4) results in the original
covariance model for variance components (B2). Specifically, we plug in and forE{h (Z )FM } E{h (Z )FM }l i i g i ij,l j,l

and , respectively. The approximate likelihood of n families can then be written asˆh (Z ) h (Z ) L(w)l i g ij,l j,l

n

L̂(w) = log f (FFh (Z ) = E{h (Z )FM }; h (Z ) = E{h (Z )FM })O b,S i l i l i i g i g i ij,l j,l j,l j,l
i=1

n n1 1 (i) ′ (i) 21ˆ ˆ{ }= 2 ( m ) log 2p 2 log FS F 1 (F 2 X b) (S ) (F 2 X b)O Oi i i i i2 2i=1 i=1

where

(i) 2 2 2 2Ŝ = E{h (Z )FM }j 1 E{h (Z )FM }j 1 z j 1 1(j = l)j ,j,l l i i a g i i d j,l g ej,l j,l

but since E{h (Z )FM } = l and E{h (Z )FM } = g , the covariance expression reduces tol i i j,l g i i j,lj,l j,l

(i) 2 2 2 2Ŝ = l j 1 g j 1 z j 1 1(j = l)jj,l j,l a j,l d j,l g e

as in standard variance components.
This links variance components into the class of tests we consider and implies that the parameter estimates and

tests of linkage gleaned from variance-components analysis will be approximately independent of the inheritance
vector-frequency estimates which are combined to produce allele-sharing statistics. Hence, evidence of linkageˆ{p }j
from variance components might be combined with that from allele-sharing methods.

Appendix C

Extensions of Haseman-Elston

Here we summarize and sketch recent attempts to improve the method of Haseman and Elston (1972). Consider
a sample of n sib pairs in which the ith pair have trait values . Assume that and that(X ,X ) E(X ) = E(X ) = mi,1 i,2 i,1 i,2

. Let denote the expected IBD sharing for the two sibs at a locus, conditional on marker2 ˆVar(X ) = Var(X ) = j pi,1 i,2 x i

data. Define and . Wright (1997) shows that and are independent.i 2 i 2F = (X 2 X ) F = (X 1 X 2 2m) F FD i,1 i,2 S i,1 i,2 D S

Drigalenko (1998) derives that for an additive trait and , where b is the onlyˆ ˆ ˆ ˆE(F Fp) = a 2 bp E(F Fp) = a 1 bpD D S S
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parameter relevant to linkage analysis. Looking to combine the information from these two independent variables
for inference about b, both Drigalenko (1998) and Elston et al. (in press) propose regressing some scaled version
of on and testing the resultant estimate against the null hypothesis .1 ˆˆ(F 2 F ) = (X 2 m)(X 2 m) p b H : b = 0S D 1 2 04

and are not equally informative because , while , so2 2 2 2ˆ ˆF F Var(F ) { j = 2(a 2 bp) Var(F ) { j = 2(a 1 bp)S D D D D S S S

that weighted regression is likely to improve power. An estimator minimizing the weighted sum of squaresb̂

L(a ,a ,b,j ,j )D S D S

n n1 1i 2 i 2ˆ ˆ= (F 2 a 1 bp ) 1 (F 2 a 2 bp )O OD D i S S i2 2j ji=1 i=1D S

can be shown by simulation to be more powerful than both the old and new Haseman-Elston tests and about as
powerful under many models as the likelihood-ratio test statistic based on variance-components analysis of sib
pairs. This approach will be discussed in detail in a future publication.
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